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Dynamic modification of cytoplasmic and nuclear proteins by SH Caspase-3 cleavage sites SH
O-linked 2-acetamido-2-deox§-b-glucopyranosyl ©-GIcNAc) A hIOGA { ) i1
residues is an important signaling mechanism that shares charac- SH_Cagpase-3 cleayage sites HAT
teristics with phosphorylatioh: O-GIcNAc-ylation” functions in hsOGA O-GlcNAcase OGT interaction -
diverse cellular processes including nutrient sen3dingdifying B - - _
protein target activity,and controlling gene expressitend protein e 70uM
degradatior®. Unusual patterns oO-GIcNAc-ylation have been w01 Tl LY L | 40pM
linked to insulin resistanéeand to several neurodegenerative sood L e o
diseased.O-GlcNAcase (OGA) promote®-GlcNAc removal and 3 - \m 0g ’ | 30 M
thus plays a key role i@-GIcNAc metabolism. Human OGA exists g 4007 PolmL 5
as two splice variantsthelong isoform(hlIOGA) gene consists of E’ 200 - 20 UM
16 exons and encodes a protein that has a N-terminus domain : 2 .
homologous to hyaluronidase and a C-terminal region considered £
to be a histone acetyltransferase (HAT) donfatine short isoform 2 100 S 1 opm
(hsOGA) is encoded by an alternatively spliced transcript consisting i S T
of only 10 exons and part of intron 10 that contains an alternative ‘Y—A Short OGA
stop codon. Short OGA therefore lacks the C-terminal HAT domain A00 ; 3 : i 5 !
and has 15 amino acids at its C-terminus different from those in C 30.0- i
long OGA. Interestingly, a single nucleotide polymorphism located G40 M
in the intron 10 of the gene for OGA has been associated with 2504
type Il diabetes in Mexican Americad%.We have recently _
demonstrated that the short OGA hydrolyzes ih-linked 3 ™% | 480 M
glycosidic bond of GIcNAc from glycoproteins vitro.'* A number . 1504
of mechanistic studies of long OGA and crystallographic studies g p 320 pM
of homologous bacterial enzymes have demonstrated that the & 100. '
O-GIcNAcase active site resides in the N-terminal domain, and that £ 160 um
catalysis requires aspartic acids at 174, 175, and 177 as key catalytic 2 so. S " | % EM
residues that enable a substrate-assisted mech&hisr@iven that -&ﬁm & o oM
this domain is also found in short OGA, it is surprising that short o1 = Lona OGA
OGA is comparatively resistant to previously described potent S0l s ) ) g i |
inhibitors of long OGA and lysosomal hexosaminidases including 0045 0030 0015 0 0015 0030 0045 0060 0075
PUGNACc and NAG-thiazoline (see Supporting Information, S-1). 1GleNAc-a-thiosulfonate] (uM)

We prewously_ measured the _klnenc parameters of both OGA Figure 1. Schematic protein structures of long and short OGA (A) and
enzymes by using the fluorogenic FDGICNAc substtatend found chemical structures of FDGIcNAdY and GlcNAca-thiosulfonate 2) and
that they behave differently &GIcNAcase catalysts.We report LineweaverBurk analyses of short (B) and long OGA (C) inhibition in
here the differential inhibition characteristics of a new inhibitor, the presence of increasing concentrationg.of
o-GIcNAc thiolsulfonate2, toward the OGA isoforms and the by 2 of long OGA and lysosomal hexosaminidase is about 4-fold
effects ofpseudeglycosylation of long OGA by on the properties  and 9-fold less than that of short OGA, indicating some degree of
of the enzyme. selectivity. A LineweaverBurk plot of the initial velocity of
Previously described hexosaminidase inhibitors are much lessFDGIcNAc hydrolysis by both OGA isoforms at varied concentra-
potent against the short OGA isoform than the longer, HAT domain tions of 2 reveals the mode of enzyme inhibition (Figure 1). The
containing enzyme (see S-1). However, we have found that inhibitor, thiolsulfonate2, acts as a purely competitive inhibitor of
o-GIcNAc thiolsulfonate2 (see Supporting Information for its  short OGA, withK; = 10 M, indicating that inhibitor 2) and
synthesis) is a more effective inhibitor of short OGA than previous FDGIcNAc substratel) are mutually exclusive in the active site
potent inhibitors of hexosaminidases (see S-2). Respective inhibition of the enzyme. The presence »fthanges both the appareft,
and the apparentn,y indicating a mixed-type inhibition for long
T Laboratory of Cell Biochemistry and Biology, NIDDK, National Institute of ~ OGA. Therefore2 can bind competitively with the substrate not

Health. _ i i i i
#Rutgers, The State University of New Jersey. only at .the N terminal active site but also at another site apart from
8NIH Chemical Genomics Center, NHGRI, National Institute of Health. the active site of OGA.
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that the amount of effective enzyme decreases as the time of
preincubation of long OGA witl2 increases (S-6). Furthermore,
Iong OGA short OGA thiol-GlcNAc-modified long OGA is completely insensitive to
2 .- . Dl"' 2: - + cleavage by caspase 3. Long OGA is known to be a substrate for
* caspase 3, and its cleavage sites are speculated to reside in the
N-terminal and middle domairi8.Complete caspase 3 resistance
of modified long OGA suggests a dramatic change in the conforma-
tion or steric properties of the latter, rendering the cleavage sites
inaccessible (S-5B). It is presently unclear whether the modification
of long OGA with S-GIcNAc occurs while the inhibitor is bound
to the active site or occurs independent of the active site binding
event; however, our results suggest that a change in the conforma-
tion of enzyme upon remote modification drastically alters the active
site architecture, resulting in a complete blockage of substrate
access. The covalent attachment of$GIcNAc unit to long
OGA accounts for the irreversible and time-dependent irreversible
inhibition of catalysis.

How might theo-linked GIcNAc thiolsulfonat€ competitively
inhibit an enzyme that specifically procesgkinked substrates?
One hypothesis is th& assumes théS; twist boat conformation
of the bound substrate. In this conformation, the sulfonyl oxygens
might be in position to act as H-bond acceptdfeom the general
acid residue and/or other donor residues in the active site (see S-7

Figure 2. Western blot analyses of long OGA (left) and short OGA (right) ~ for illustration).
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